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Salmonella enterica infections cause considerable morbidity and mortality worldwide. Antimicrobial therapy may be life­

saving for patients with extraintestinal infections with S. enterica serotype Typhi or non-Typhi salmonellae. Because anti­

microbial resistance to several classes of traditional first-line drugs has emerged in the past several decades, the quinolone 

antimicrobial agents, particularly the fluoroquinolones, have become the drugs of choice. Recently, resistance to nalidixic 

acid has emerged among both Typhi and non-Typhi Salmonella serotypes. Such Salmonella isolates typically also have decreased 

susceptibility to fluoroquinolones, although minimum inhibitory concentrations of the fluoroquinolones usually are within 

the susceptible range of the interpretive criteria of the NCCLS. A growing body of clinical and microbiological evidence 

indicates that such nalidixic acid–resistant S. enterica infections also exhibit a decreased clinical response to fluoroquinolones. 

In this article, we recommend that laboratories test extraintestinal Salmonella isolates for nalidixic acid resistance, we 

recommend that short-course fluoroquinolone therapy be avoided for infection with nalidixic acid–resistant extraintestinal 

salmonellae, and we summarize existing data and data needs that would contribute to reevaluation of the current NCCLS 

fluoroquinolone breakpoints for salmonellae. 

BACKGROUND sulfonamide combinations, has emerged worldwide among 

Typhoid fever is an acute, generalized infection of the reticu-
both S. Typhi [4–8] and non-Typhi salmonellae [9]. Conse­

loendothelial system caused by Salmonella enterica subspecies quently, fluoroquinolones (e.g., ciprofloxacin), which have been 

enterica serotype Typhi that is estimated to cause 16 million available since the 1980s, have become the mainstay of therapy 

illnesses and 600,000 deaths worldwide annually [1]. Non- for invasive salmonellosis [10]. Nalidixic acid is the prototype 

Typhi serotypes of S. enterica are estimated to cause ∼1,412,000 quinolone. It has been available in many countries since the 

illnesses and 600 deaths annually in the United States alone mid-1960s, but it is now seldom used because of the increasing 

[2]. Timely treatment with appropriate antimicrobial agents is prevalence of nalidixic acid–resistant salmonellae. 

important for reducing the mortality of extraintestinal infec- The NCCLS sets standards for antimicrobial susceptibility 

tions due to S. Typhi and non-Typhi serotypes [3]. Unfortu- testing methods and interpretive criteria for the United States; 

nately, resistance to traditional first-line antimicrobial agents, NCCLS recommendations also have considerable influence in 

such as ampicillin, chloramphenicol, and trimethoprim- many other countries. The current MIC breakpoints for En­

terobacteriaceae (including S. enterica) for ciprofloxacin are �4 
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16–23]. The MICs of ciprofloxacin for these nalidixic acid– 

resistant isolates are usually increased, although they are still 

within the current NCCLS range for susceptibility (i.e., 0.12–0.5 

mg/mL). Unfortunately, however, reports indicate that patients 

with extraintestinal nalidixic acid–resistant S. Typhi or non-

Typhi Salmonella infections are less likely to respond adequately 

to fluoroquinolone therapy than are patients with nalidixic 

acid–susceptible Salmonella infections [17, 23–45]. Such reports 

suggest that current NCCLS breakpoints for ciprofloxacin may 

not accurately predict clinical response to treatment of patients 

with extraintestinal salmonellosis [46]. Here, we review existing 

evidence and data needs that may contribute to the reevaluation 

of the NCCLS breakpoints for fluoroquinolones among Sal­

monella species to reflect more accurately the clinical response 

to therapy. 

EPIDEMIOLOGY OF SALMONELLAE 
WITH DECREASED SUSCEPTIBILITY 
TO FLUOROQUINOLONES 

To determine the antimicrobial resistance patterns of S. Typhi 

isolates, the Foodborne and Diarrheal Diseases Branch of the 

United States Centers for Disease Control and Prevention 

(CDC; Atlanta, GA) initiated laboratory-based surveillance for 

the 1-year period from 1 June 1996 through 31 May 1997 [10]. 

During this period, state public health laboratories forwarded 

S. Typhi isolates from clinical laboratories to the CDC. Anti­

microbial susceptibility testing was performed on all isolates, 

and a standard questionnaire was administered to patients. In 

1996, the National Antimicrobial Resistance Monitoring System 

[13] was established (http://www.cdc.gov/narms/). Participat­

ing state and local health departments forward every tenth non-

Typhi Salmonella isolate and, since 1999, every S. Typhi isolate 

to the CDC for antimicrobial susceptibility testing for nalidixic 

acid, ciprofloxacin, and other antimicrobial agents with use of 

limited-range broth microdilution panels (Sensititre; TREK Di­

agnostic Systems), in accordance with NCCLS standards and 

interpretive criteria. 

In 1996–1997, 20 (6.8%) of 293 S. Typhi isolates reported 

to the CDC were nalidixic acid resistant [10]. By 2000, the 

proportion of S. Typhi isolates identified through NARMS to 

be nalidixic acid resistant increased to 41 (23.2%) of 177 iso­

lates. Because ∼80% of S. Typhi infections reported in the 

United States are acquired abroad, these data largely reflect the 

increase of nalidixic acid resistance among S. Typhi globally 

[10]. Because humans are the only reservoir for S. Typhi, and 

because transferable nalidixic acid resistance is uncommon, the 

emergence of nalidixic acid–resistant S. Typhi isolates is, at least 

in part, the consequence of treatment of patients who have 

typhoid fever with quinolones, particularly fluoroquinolones. 

A similar increase in the prevalence of nalidixic acid resistance 

has been noted among non-Typhi Salmonella isolates [47]. In 

1996–1997, 16 (0.6%) of 2627 non-Typhi salmonellae tested 

were resistant to nalidixic acid; by 2000, 34 (2.5%) of 1378 

non-Typhi Salmonella isolates tested were resistant to nalidixic 

acid [13]. Unlike S. Typhi infections, most non-Typhi Salmo­

nella infections in the United States have food animal (e.g., 

chicken, cattle, swine, or turkey) reservoirs and are acquired 

domestically. It is likely that the increased prevalence of nali­

dixic acid resistance among non-Typhi salmonellae that infect 

humans in the United States is, in part, a consequence of the 

administration of fluoroquinolones to food animals [48–51]. 

THE MOLECULAR BASIS OF QUINOLONE 
RESISTANCE 

Bacteria most commonly develop resistance to quinolones by 

nontransmissible, spontaneously occurring point mutations in 

chromosomal genes (gyrA, gyrB, parC, and parE). These point 

mutations alter the enzymes (DNA gyrase and topoisomerase 

IV) that are targets for quinolone drugs. Although altered per­

meability of bacterial cell membranes [52, 53] and efflux pumps 

are not well understood, these mechanisms also play a role in 

quinolone resistance for some isolates and are not known to 

be transmissible [54, 55]. More recently, a multidrug-resistance 

plasmid was discovered [56] that encodes transferable resistance 

to quinolones via the qnr gene. The qnr gene product has been 

demonstrated to directly protect DNA gyrase from quinolone 

inhibition [57]. 

Chromosomal point mutations resulting in alterations of the 

A subunit of DNA gyrase that lead to quinolone resistance have 

been defined in a substantial number of clinical and laboratory 

isolates of Enterobacteriaceae, including Escherichia coli [58]. 

These alterations of the target enzyme are clustered between 

amino acids 67 and 106 in the amino terminus of the A protein 

known as the quinolone resistance–determining region [59]. 

Similar chromosomal mutations and changes in the A subunit 

have been documented for isolates of S. enterica [14, 38, 60]. 

Single chromosomal point mutations have been demonstrated 

to be sufficient to cause an amino acid change and to result 

in nalidixic acid resistance. Two or more chromosomal point 

mutations are usually necessary to result in ciprofloxacin re­

sistance, on the basis of current NCCLS interpretive criteria 

[54]. 

DISTRIBUTIONS OF MICs OF QUINOLONE 
AMONG SALMONELLAE 

It is important to consider how antimicrobial susceptibility 

testing might be used to better predict the clinical outcomes 
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for patients with extraintestinal salmonellosis treated with 

fluoroquinolones. To examine this, we prepared scatterplots of 

MICs of nalidixic acid and compared them with those of cip­

rofloxacin for S. Typhi (figure 1) and for non-Typhi salmonellae 

(figure 2) submitted to NARMS for 1999–2000 and 1996–2000, 

respectively [13]. Current NCCLS breakpoints for ciprofloxacin 

(resistant, �4 mg/mL; susceptible, �1 mg/mL) and for nalidixic 

acid (resistant, �32 mg/mL; susceptible, �16 mg/mL) are 

marked in both figures. For both S. Typhi and for non-Typhi 

salmonellae, MIC distribution curves for nalidixic acid are bi­

modal, with modal peaks at �4 mg/mL and 256 mg/mL. How­

ever, it is not possible to clearly differentiate 2 populations using 

the MIC data for ciprofloxacin. Nonetheless, nalidixic acid– 

resistant salmonellae tend to have MICs of ciprofloxacin that 

cluster within the upper part of the current susceptibility range 

(0.12–0.5 mg/mL), whereas nalidixic acid–susceptible salmo­

nellae tend to have MICs of ciprofloxacin of �0.03 mg/mL 

(figures 1 and 2). On the basis of these data, testing Salmonella 

isolates for nalidixic acid susceptibility would appear to be a 

useful screening test for reduced susceptibility to fluoroquin­

olones. A screening test using nalidixic acid disks has been 

evaluated and demonstrates high sensitivity and specificity for 

detecting salmonellae with reduced susceptibility to ciproflox­

acin (MIC, �0.125 mg/mL) [61]. However, outliers can be seen 

on our scattergrams (figures 1 and 2), indicating that the nal­

idixic acid screening test has some limitations. 

CLINICAL AND BACTERIOLOGICAL 
RESPONSE OF SALMONELLA INFECTIONS 
WITH DECREASED SUSCEPTIBILITY 
TO FLUOROQUINOLONES 

Evidence concerning both the clinical and the bacteriologic 

response of patients with extraintestinal salmonellosis due to 

nalidixic acid–resistant S. Typhi and non-Typhi salmonellae is 

available from studies involving laboratory animals or infected 

patients. 

Animal models. S. enterica serotype Typhimurium infec­

tion of mice is frequently used as an animal model for typhoid 

fever of humans. The correlation between the MIC and the 

effective dose of 50% (ED50) of ciprofloxacin for strains of S. 

Typhimurium Definitive Type 104 (DT104) has been studied 

in the mouse peritonitis/sepsis model. Investigators found that 

minor changes in the MICs of ciprofloxacin (range, 0.023–0.190 

mg/mL), even when remaining within the NCCLS breakpoint 

for susceptibility, induced major changes in the ED50 in the 

mouse peritonitis model to more than the acceptable dosing 

range (range, 27–85 mg/kg) [62]. The findings suggest that 

ciprofloxacin treatment may not be effective for serious Sal­

monella infection when the organism has reduced susceptibility 

to ciprofloxacin within the current NCCLS susceptible range, 

as is seen with nalidixic acid–resistant salmonellae [62]. 

Human S. Typhi infection. Since the early 1990s, reports 

Figure 1. MIC scatterplots for nalidixic acid versus ciprofloxacin for Salmonella enterica serotype Typhi, National Antimicrobial Resistance Monitoring 
System, 1999–2000 (343 Salmonella isolates). I, intermediate resistance; R, resistant (current NCCLS breakpoints for resistant organisms are �32 mg/ 
mL for nalidixic acid and �4 mg/mL for ciprofloxacin); S, susceptible (current NCCLS breakpoints for susceptible organisms are �16 mg/mL for nalidixic 
acid and �1 mg/mL for ciprofloxacin). 
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Figure 2. MIC scatterplots for nalidixic acid versus ciprofloxacin for non-Typhi salmonellae, National Antimicrobial Resistance Monitoring System, 
1996–2000 (6968 Salmonella isolates). I, intermediate resistance; R, resistant (current NCCLS breakpoints for resistant organisms are �32 mg/mL for 
nalidixic acid and �4 mg/mL for ciprofloxacin); S, susceptible (current NCCLS breakpoints for susceptible organisms are �16 mg/mL for nalidixic acid 
and �1 mg/mL for ciprofloxacin). 

have been published documenting human nalidixic acid– 

resistant S. Typhi infections that did not respond to ciproflox­

acin therapy, despite the organisms having MIC values within 

the susceptible range [16, 17, 26–35, 60]. In 1997, these ob­

servations made in case reports were extended by a typhoid 

fever treatment trial of ofloxacin, a fluoroquinolone with prop­

erties similar to those of ciprofloxacin. The study of short-

course (2–3-day) ofloxacin therapy conducted in Vietnam for 

uncomplicated typhoid fever included 117 patients infected 

with multiple-drug–resistant S. Typhi. Of these 117 patients, 

99 (85%) were infected with nalidixic acid–susceptible isolates, 

and 18 (15%) were infected with nalidixic acid–resistant iso­

lates. All S. Typhi isolates had MICs of ofloxacin of �1 mg/ 

mL. The median time to fever clearance was 156 h (range, 

30–366 h) for patients infected with nalidixic acid–resistant S. 

Typhi and 84 h (range, 12–378 h) for those infected with nal­

idixic acid–susceptible S. Typhi ( P ! .001 ). Furthermore, 6 

(33%) of 18 nalidixic acid–resistant S. Typhi infections required 

re-treatment, whereas 1 (0.8%) of 132 infections caused by 

susceptible strains required re-treatment (relative risk, 44; 95% 

CI, 56–345). The authors of this report recommended that 

short courses (!5 days) of fluoroquinolone therapy not be used 

for patients infected with nalidixic acid–resistant S. Typhi. They 

also noted that nalidixic acid–resistant S. Typhi infections had 

unsatisfactory responses to treatment with a full 7–10-day 

course of ofloxacin [60]. 

Human non-Typhi Salmonella infection. The first reports 

of treatment failures associated with infection due to nalidixic 

acid–resistant non-Typhi salmonellae (for which the MICs of 

fluoroquinolone were within the susceptible range) were also 

published during the 1990s [20, 25, 36, 37, 39–45, 63]. In an 

outbreak of infection with multidrug-resistant S. Typhimurium 

DT104 caused by contaminated pork that occurred in Denmark 

during 1998, ciprofloxacin therapy lacked clinical effect for 5 

(19%) of 27 patients. Three patients had persistent diarrhea, 

despite receipt of ciprofloxacin therapy. Two patients died with 

intestinal perforations, despite receipt of ciprofloxacin therapy 

at recommended doses. The outbreak strain was resistant to 

nalidixic acid but had MICs of fluoroquinolone of 0.06–0.12 

mg/mL. Such isolates would be considered susceptible to fluor­

oquinolones, according to current NCCLS MIC breakpoints 

[20]. 

In 2002, observations made from case reports were supple­

mented by data from a matched cohort study of the Danish 

population. By linking data from the Danish Surveillance Reg­

istry for Enteric Pathogens with the Civil Registration System 

and the Danish National Discharge Registry, 2-year death rates 

among 2047 patients with S. Typhimurium infection were com­

pared with those for a matched sample from the Danish general 

population. Through their matching criteria, the authors of this 

study controlled for differences in comorbidity in an effort to 

account for the potential association between underlying dis­
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ease and previous exposure to antimicrobial agents. Patients 

infected with nalidixic acid–resistant isolates were 10 times 

(95% CI, 3.3–51.9) more likely to die in the 2 years after in­

fection than were persons in the general Danish population, 

whereas patients infected with isolates that were resistant to 

ampicillin, chloramphenicol, streptomycin, sulfonamides, and 

tetracycline but not to nalidixic acid were only 4.8 times (95% 

CI, 2.2–10.2) more likely to die. Because ciprofloxacin is stan­

dard therapy for extraintestinal salmonellosis in Denmark, these 

data provide strong corroborating evidence that infections with 

nalidixic acid–resistant non-Typhi salmonellae with an MIC of 

ciprofloxacin within the susceptible range respond poorly to 

ciprofloxacin therapy, compared with infections with nalidixic 

acid–susceptible isolates [25]. 

PHARMACOKINETIC AND 
PHARMACODYNAMIC (PK/PD) 
CONSIDERATIONS 

Ratios of serum peak antimicrobial concentration to MIC 

(peak/MIC) and ratios of 24-h area under the serum concen­

tration-versus-time curve (AUC) to MIC are the major PK/PD 

determinants of activity for fluoroquinolones [64, 65]. Twenty-

four–hour AUC/MIC ratios of �100 are required to produce 

survival rates approaching 100% in experimental animal in­

fections [66], and AUC/MIC ratios of �125 have been asso­

ciated with satisfactory outcome in clinical trials of fluoro­

quinolones among seriously ill patients [67]. Peak/MIC ratios 

of 8–10 have been shown, both in vitro and in vivo, to prevent 

the emergence of resistant mutants during fluoroquinolone 

therapy [68, 69]. These AUC/MIC and peak/MIC ratios are 

not met for salmonellae with reduced susceptibility to fluor­

oquinolones (e.g., MIC of ciprofloxacin, 0.5 mg/mL) when 

treated with standard oral adult doses of ciprofloxacin (i.e., 500 

mg twice per day), which may produce serum concentrations 

of ∼2.4 mg/mL and a 24-h AUC of ∼23 h 7 mg/mL [70]. In this 

example, the peak/MIC ratio would be 5, and the AUC/MIC 

ratio would be 46. Therefore, predictions from PK/PD data are 

consistent with observed increased clinical failure rates among 

persons infected with salmonellae with reduced susceptibility 

to fluoroquinolones. 

DISCUSSION 

Considerable data have now accumulated to suggest that in­

fections due to S. Typhi and non-Typhi salmonellae with re­

duced susceptibility to fluoroquinolones may not respond 

satisfactorily to therapy with ciprofloxacin or other fluoro­

quinolones, despite MIC values in the current NCCLS range 

for susceptibility. The findings are consistent with increased 

clinical failure rates previously observed among persons with 

Neisseria gonorrhoeae infection with decreased susceptibility to 

fluoroquinolones [71]. Spontaneous chromosomal mutations, 

selective pressure by use of antimicrobial agents in animals and 

humans, the potential for clonal expansion of nalidixic 

acid–resistant salmonellae [72], and the recent discovery of 

transmissible resistance [57] indicate that quinolone-resistant 

Salmonella infection is likely to become a greater global public 

health problem. 

As might be anticipated, the failure of treatment was iden­

tified first for nalidixic acid–resistant S. Typhi infections treated 

with short-course (!5-day) fluoroquinolone therapy [60]. Sev­

eral studies conducted before the widespread emergence of nal­

idixic acid–resistant S. Typhi demonstrated that fluoroquino­

lone treatment courses as short as 2 days were 190% effective 

for treating patients with mild-to-moderate typhoid fever 

[73–76]. The results of these studies led to wide adoption of 

short-course treatment strategies to minimize the likelihood of 

adverse events associated with fluoroquinolone use in children 

[77], to reduce cost, and to improve patient compliance. There 

is sufficient evidence in the literature to now recommend dis­

continuation of short-course fluoroquinolone therapy for ex­

traintestinal nalidixic acid–resistant S. Typhi and non-Typhi 

Salmonella infection. There is also some evidence to suggest 

that standard long-course (7–10-day) fluoroquinolone therapy 

is less effective for nalidixic acid–resistant S. Typhi and non-

Typhi Salmonella infection. 

Additional data are needed to more thoroughly evaluate new 

fluoroquinolone MIC breakpoints for salmonellae. A better un­

derstanding of pharmacodynamics of nalidixic acid–resistant 

bacteria is needed. It would be useful to investigate clinical 

response to therapy of Salmonella isolates that are nalidixic acid 

susceptible but have reduced susceptibility to fluoroquinolones 

(figures 1 and 2). The correlation between the fluoroquinolone 

disk test zone size and the MIC needs to be further explored 

to provide data to inform reevaluation of zone size breakpoints 

for fluoroquinolones. Rigorous studies are needed to determine 

whether standard courses (7–10 days) and higher doses of var­

ious fluoroquinolone class members could reduce clinical and 

bacteriologic failure rates for extraintestinal nalidixic acid– 

resistant S. Typhi and non-Typhi salmonellae. At present, fewer 

data are available on the clinical importance of infections due 

to nalidixic acid–resistant non-Salmonella genera of Entero­

bacteriaceae than for S. enterica. However, the evidence that 

has accumulated for S. enterica should also increase research 

attention to fluoroquinolone breakpoints for other genera of 

Enterobacteriaceae. 

The NCCLS has recently adopted new language advising phy­

sicians and laboratories that fluoroquinolone-susceptible 

strains of Salmonella that are determined to be resistant to 

nalidixic acid may be associated with clinical failure or delayed 

response in fluoroquinolone-treated patients with extraintes-
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tinal salmonellosis. The NCCLS advises that testing of extrain­

testinal Salmonella isolates for nalidixic acid resistance may be 

considered [11]. Moreover, outliers noted on the NARMS nal­

idixic acid versus fluoroquinolone MIC scatterplots (figures 1 

and 2) indicate that this screening test will not identify all 

Salmonella isolates with decreased susceptibility to fluoro­

quinolones. 

Evidence from fluoroquinolone MIC distribution curves, 

from studies of clinical and bacteriologic response rates, and 

from PK/PD data, suggests that the current NCCLS fluoro­

quinolone breakpoint for resistance needs to be reevaluated for 

S. enterica serotypes and that further research is needed to guide 

the reevaluation process. The implications of reclassifying a 

substantial proportion of Salmonella isolates as fluoroquinolone 

nonsusceptible are complex and far-reaching, because alter­

native classes of antimicrobial agents for extraintestinal sal­

monellosis may be expensive to purchase, inconvenient to ad­

minister, and less efficacious than are fluoroquinolones for 

nalidixic acid–susceptible infections [73, 78, 79]. 
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